NormalKernel
The Normal kernel is denoted by
\[k(y\mid x) = \mathcal{N}(y ; \mu(x) , \Sigma(x) ).\]
As with the Normal distributions, the explicit expression on the kernel depends on whether it is real or complex valued.
Types
MarkovKernels.AbstractNormalKernel
— TypeAbstractNormalKernel
Abstract type for representing Normal kernels.
MarkovKernels.NormalKernel
— TypeNormalKernel
Standard mean vector / covariance matrix parametrisation of Normal kernels.
Type aliases
const HomoskedasticNormalKernel{TM,TC} = NormalKernel{<:Homoskedastic,TM,TC} where {TM,TC} # constant conditional covariance
const AffineHomoskedasticNormalKernel{TM,TC} =
NormalKernel{<:Homoskedastic,TM,TC} where {TM<:AbstractAffineMap,TC} # affine conditional mean, constant conditional covariance
const AffineHeteroskedasticNormalKernel{TM,TC} =
NormalKernel{<:Heteroskedastic,TM,TC} where {TM<:AbstractAffineMap,TC} # affine conditional mean, non-constant covariance
const NonlinearNormalKernel{TM,TC} = NormalKernel{<:Heteroskedastic,TM,TC} where {TM,TC} # the general, nonlinear case
Constructors
MarkovKernels.NormalKernel
— MethodNormal(μ, Σ)
Creates a Normal kernel with conditional mean and covariance parameters μ and Σ, respectively.
Methods
Statistics.mean
— Methodmean(K::AbstractNormalKernel)
Computes the conditonal mean function of the Normal kernel K. That is, the output is callable.
Statistics.cov
— Methodcov(K::AbstractNormalKernel)
Computes the conditonal covariance function of the Normal kernel K. That is, the output is callable.
MarkovKernels.covp
— Methodcovp(K::AbstractNormalKernel)
Returns the internal representation of the conditonal covariance matrix of the Normal kernel K. For computing the actual conditional covariance matrix, use cov.
Base.rand
— Methodrand([rng::AbstractRNG], K::AbstractNormalKernel, x::AbstractVector)
Samples a random vector conditionally on x with respect the the Normal kernel K using the random number generator rng.